自然科学版
陕西师范大学学报(自然科学版)
资源与环境科学
我国省域国际旅游(外汇)收入的空间自相关研究
PDF下载 ()
张军谋1,2, 周晓唯1*, 李蓓蓓1,3, 焦贝贝1
(1 陕西师范大学 国际商学院, 陕西 西安 710119; 2 兰州文理学院 旅游学院, 甘肃 兰州 730000;3 西安财经学院 经济学院, 陕西 西安 710061)
周晓唯,男,教授,博士生导师。E-mail:xiaowei@snnu.edu.cn
摘要:
以2004—2013年我国大陆31个省域国际旅游(外汇)收入为研究对象,通过计算Moran′s I,分析了我国省域时间序列国际旅游(外汇)收入的全域空间自相关和局域空间自相关关系。结果表明:在全域空间上,我国大陆31个省域的国际旅游(外汇)收入平均关联程度呈较低水平的空间正相关,关联程度不太显著。在局域空间形态上,我国东北、西北、华北和西南部分省域国际旅游(外汇)收入长期处于低值被低值包围的低-低空间自相关形态;而高值被高值包围的高-高空间自相关的空间集聚形态主要分布在我国东南沿海一带;低-高形态的空间集聚形态主要分布在华中地区;华北地区的北京、天津,东北地区的辽宁,西南地区的云南是我国国际旅游(外汇)收入高-低空间形态集聚的主要地区,但这些地区与周边省域国际旅游(外汇)收入的空间关系均为负空间相关。
关键词:
旅游; 国际旅游(外汇)收入; 空间自相关; Moran′s I
收稿日期:
2016-01-06
中图分类号:
F590.84
文献标识码:
A
文章编号:
1672-4291(2016)05-0094-08doi:10.15983/j.cnki.jsnu.2016.05.451
基金项目:
国家社会科学基金(16CJL011);陕西师范大学2016年研究生创新基金(2016CBY008); 中央高校基本科研业务费专项资金
Doi:
A spatial autocorrelation study on the international tourism (foreign exchange) earnings of the provincial domain region in China
ZHANG Junmou1,2, ZHOU Xiaowei1*, LI Beibei1,3, JIAO Beibei1
(1 School of International Business, Shaanxi Normal University, Xi′an 710119, Shaanxi, China; 2 School of Tourism, Lanzhou University of Arts and Science, Lanzhou 730000, Gansu, China;3 School of Economics, Xi′an University of Finance and Economics, Xi′an 710061, Shaanxi, China)
Abstract:
Taking the international tourism(foreign exchange) earnings of 31 provincial domain region in China from 2004 to 2013 as the study object, the time serious international tourism(foreign exchange) earnings′s spatial autocorrelation relationship between Moran′s I and local Moran′s I of provincial domain were analyzed. The results indicate that the average association degree for the Moran′s I appears lower-level positive correlation, it means the homogeneous characteristics in the different provincial domain international tourism(foreign exchange) earnings are not significant.In the local spatial, the low-low spatial autocorrelation agglomeration pattern is distributed in northeast, northwest,north China and southwest. High-high spatial autocorrelation agglomeration pattern is mainly distributed in southeast coast of China. Low-high spatial autocorrelation agglomeration pattern is mainly distributed in central China.Beijing, Tianjin, Liaoning, Yunnan are the high-low spatial autocorrelation agglomeration regions, and they have negative spatial correlation with the surrounding provincial domain regions.
KeyWords:
tourism; international tourism (foreign exchange) earnings; spatial autocorrelation; Moran′s I