自然科学版
陕西师范大学学报(自然科学版)
物理学
一维不连续映像动力学时间序列的复杂网络分析
PDF下载 ()
路少怀, 杜如海, 屈世显*
(陕西师范大学 物理学与信息技术学院, 陕西 西安 710119)
屈世显,男,教授,博士生导师。E-mail: sxqu@snnu.edu.cn
摘要:
利用复杂网络方法研究了一维不连续映像的动力学,建立了不同动力学状态时间序列相应的复杂网络。对于任意P周期吸引子,可以构成相互独立的P个全连接网络;对于混沌吸引子,可以构成许多分立的复杂网络。同时,讨论了系统所对应网络的连接密度、聚类系数、平均最短路径长度等特征量随控制参数变化的特征,分析了网络特征量与系统动力学之间的联系。结果发现:连接密度在不同周期吸引子间有不连续的跃变,在周期吸引子和混沌吸引子转变时出现不光滑变化;聚类系数和平均最短路径在周期吸引子与混沌吸引子间发生转变,并且在吸引子融合处均呈现不光滑转变。因此,可以用相应复杂网络特征量刻画不同动力学状态及指示其转变,并且当有吸引子共存出现时,这些量可以检出周期吸引子。
关键词:
递归图; 复杂网络; 不连续映像; 动力学转变
收稿日期:
2016-01-27
中图分类号:
O415.5
文献标识码:
A
文章编号:
1672-4291(2016)04-0038-06doi:10.15983/j.cnki.jsnu.2016.04.244
基金项目:
国家自然科学基金(10875076)
Doi:
Complex network analysis on the dynamical time series in one dimensional discontinuous map
LU Shaohuai, DU Ruhai, QU Shixian*
(School of Physics and Information Technology, Shaanxi Normal University,Xi′an 710119, Shaanxi, China)
Abstract:
The dynamics of one dimensional discontinuous map is investigated by the complex network approach. The complex networks are built for corresponding time series of different dynamical states. There are P independent full-linked networks for an arbitrary P-period attractor and many independent complex networks of different sizes for a chaotic attractor. Meanwhile, the control parameter dependence of the link density, the clustering coefficient and the average length of the shortest paths for the complex networks are calculated and discussed. The correlation of these characteristic quantities with the dynamics of the system is analyzed. The result shows that the link density shows a discontinuous change for different periodic attractor and a nonsmooth change at the transition point between a periodic attractor and a chaotic attractor; the nonsmooth changes of the clustering coefficient and the average length of the shortest paths appear at the transition point between periodic and chaotic attractors, and the merging point of chaotic attractors, respectively. These phenomena imply that the characteristic quantities might be proper indexes to describe the dynamical states and exhibit their transitions. Moreover, they may help to check out the periodic attractors when they are coexistence with some other attractors.
KeyWords:
recurrence plot; complex network; discontinuous map; dynamical transitions