自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
一种基于分层特征学习的标签一致K-SVD图像分类方法
PDF下载 ()
王博, 郭继昌*, 张艳
(天津大学 电子信息工程学院,天津 300072)
郭继昌,男,教授,博士。E-mail: jcguo@tju.edu.cn.
摘要:
为更好提取信息丰富的图像表示,提出了一种基于分层特征学习的标签一致K-SVD图像分类方法。首先,对基于灰度或RGB类型的图像进行稠密的块采样,然后利用分层正交匹配追踪获取图像特征,代替传统的基于SIFT描述子结合空间金字塔池化的方式。在引入标签一致性约束后,利用K-SVD算法对已获取特征进行判别式字典的学习,同时得到了最优的线性分类器。实验结果表明,该方法在Caltech101、Oxford Flowers 和UIUC-Sports 3类数据集中,分类准确率分别达到了76.7%、84.9%和87.1%,优于其他算法。
关键词:
图像表示; 分层特征学习; K-SVD; 图像分类
收稿日期:
2015-08-18
中图分类号:
TP391.4
文献标识码:
A
文章编号:
1672-4291(2016)04-0017-06doi:10.15983/j.cnki.jsnu.2016.04.145
基金项目:
高等学校博士学科点专项科研基金(20120032110034); 天津市自然科学基金(15JCYBJC15500)
Doi:
An image categorization approach based on hierarchical feature learning and label consistent K-SVD
WANG Bo, GUO Jichang*, ZHANG Yan
(School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China)
Abstract:
In order to extract image representation including useful information, a method is proposed based on hierarchical feature learning and label consistent K-SVD. Firstly, a great number of patches are densely sampled only from grey or RGB type of images. Secondly, image features are generated using hierarchical orthogonal matching pursuit instead of traditional pattern based on scale invariant feature transform (SIFT) descriptor combined with spatial pyramid pooling. With a label consistency constraint, a discriminative dictionary is learned by K-SVD algorithm employing the acquired features, as well as an optimal linear classifier. The experiments on Caltech101, Oxford Flowers and UIUC-Sports benchmark datasets show that the proposed method can achieve 76.7%, 84.9% and 87.1% respectively in terms of classification accuracy, which performs better than other algorithms.
KeyWords:
image representation; hierarchical feature learning; K-SVD; image categorization