自然科学版
陕西师范大学学报(自然科学版)
物理学
扶手椅型石墨烯纳米带吸附钛原子链的电子结构和磁性
PDF下载 ()
孙凯刚1, 解忧1*, 周安宁2, 陈立勇1, 庞绍芳1, 张建民3
(1 西安科技大学 理学院, 陕西 西安 710054;2 西安科技大学 化学与化工学院, 陕西 西安 710054;3 陕西师范大学 物理学与信息技术学院, 陕西 西安 710119)
孙凯刚,男,硕士研究生,研究方向为纳米电子学。E-mail: 421315239@qq.com
摘要:
采用基于密度泛函理论的第一性原理方法,研究了扶手椅型石墨烯纳米带(10G、11G、12G和13G)吸附zigzag型Ti原子链的几何结构、电子性质和磁性。结果表明,zigzag型Ti原子链可以稳定吸附在石墨烯纳米带表面。Ti原子链吸附在纳米带的边缘洞位(10G-1、11G-1、12G-1和13G-1)时较为稳定,且稳定程度随着纳米带宽度的增加而增加。Ti原子链吸附在不同宽度石墨烯纳米带的不同位置,呈现不同的电子结构特性。其中,10G-1、10G-2和11G-2的吸附体系表现出半金属特性,其余吸附体系都为金属性质。同时,石墨烯纳米带吸附Ti原子链的体系具有磁性,其磁性主要来源于Ti原子。当Ti原子链吸附在纳米带边缘洞位时,zigzag原子链上A类Ti原子的磁矩总是小于B类Ti原子的磁矩;随着Ti原子链移向纳米带中心,两类Ti原子的磁矩趋于相等。研究结果揭示,通过吸附zigzag型Ti原子链,可以有效调控石墨烯纳米带的电子结构与磁性质。
关键词:
石墨烯纳米带; 原子链; 电子结构; 磁性; 密度泛函理论
收稿日期:
2015-09-10
中图分类号:
O469
文献标识码:
A
文章编号:
1672-4291(2016)02-0027-06doi:10.15983/j.cnki.jsnu.2016.02.222
基金项目:
中国博士后科学基金(2014M560798); 陕西省自然科学基础研究计划(2013JM8004); 陕西省博士后科学基金(111)
Doi:
Electronic structure and magnetic properties of zigzag Ti atomic chains adsorbed armchair graphene nanoribbons
SUN Kaigang1, XIE You1*, ZHOU Anning 2, CHEN Liyong1, PANG Shaofang1, ZHANG Jianmin3
(1 College of Science, Xi′an University of Science and Technology, Xi′an 710054, Shaanxi, China;2 College of Chemistry and Chemical Engineering, Xi′an University of Science and Technology, Xi′an 710054, Shaanxi, China;3 School of Physics and Information Technology, Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
Abstract:
The geometrical structures, electronic and magnetic properties of zigzag Ti atomic chains adsorption on armchair graphene nanoribbons (AGNR) have been systemically investigated using first-principles calculations. The results show that zigzag Ti atomic chains can be steadily adsorbed on the surface of AGNR. The adsorption systems are relatively stable for the Ti atomic chain on the edge hollow position of nanoribbons (10G-1, 11G-1, 12G-1, 13G-1), and the stability of adsorption systems increases with the increase of the width of nanoribbons. The electronic structure of the adsorption systems are found to depend strongly on the width of the AGNR. There are half-metal character for Ti chains adsorption on 10G-1, 10G-2 and 11G-2 systems and metallic character for other adsorption systems. The adsorption systems have magnetic moments which mainly come from Ti atoms. When the Ti atom chains adsorption on the edge hollow position of nanoribbons, the magnetic moments of TiA atoms are less than that of the TiB. As the position of the Ti atomic chains moving to the middle symmetrical position of the AGNR, the difference of magnetic moments will be decrease between the TiA and TiB atoms. These results indicate that the adsorbed Ti atomic chains can effectively modify the electrical and magnetic properties of graphene nanoribbons.
KeyWords:
graphene nanoribbons; atomic chains; electronic structure; magnetism; density-functional theory