自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
一种改进的差分进化算法
PDF下载 ()
丁晓阳, 李嵩华
(兰州财经大学 信息工程学院, 甘肃 兰州730020)
丁晓阳,男,教授,主要研究方向为软件工程、智能信息处理及计算机网络。E-mail:dingxy@lzufe.edu.cnx
摘要:
针对基本差分进化算法收敛速度较慢的问题,将粒子群优化算法中的社会学习部分引入到差分进化算法中,提出一种改进的差分进化算法。该算法通过小概率随机变异操作增加种群的多样性和全局搜索能力;变异向量和个体向群体最优个体学习的结果进行交叉操作,利用最优个体指导进化过程,加快了算法的收敛速度,提高了优化精度。仿真实验结果表明,该算法具有更好的优化性能。
关键词:
群体智能;差分进化算法;粒子群优化算法;随机变异;学习因子;多样性
收稿日期:
2015-03-05
中图分类号:
TP181
文献标识码:
A
文章编号:
1672-4291(2016)01-0001-06doi:10.15983/j.cnki.jsnu.2016.01.111
基金项目:
甘肃省教育信息化发展战略研究项目(2011-3)
Doi:
An improved differential evolution algorithm
DING Xiaoyang, LI Songhua
(School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, Gansu, China)
Abstract:
In order to enhance the convergence rate of differential evolution algorithm (DE),an improved differential evolution algorithm (IDE) is proposed which introduced the social learning part of particle swarm optimization algorithm into itself. Firstly, the new algorithm improves the diversity of population and global searching ability by small probability random mutation operator. Then, the variation vector and the result which learns from the best individual in population are crossed. The evolutionary process is guided by best individual so that the convergence rate and the optimization precision of DE are improved.The simulation results show that the improved algorithm has better optimization performance.
KeyWords:
swarm intelligence; differential evolution algorithm; particle swarm optimization; random mutation; learning factor; diversity