自然科学版
陕西师范大学学报(自然科学版)
物理学
曲率模量不同的两组分膜泡形状方程的数值解
PDF下载 ()
周五斌, 张劭光*
(陕西师范大学 物理学与信息技术学院, 陕西 西安 710119)
周五斌,男,硕士研究生,研究方向为理论生物物理。E-mail:zwb50@163.com
摘要:
采用变分法讨论了旋转对称情况下曲率模量不相同的两组分膜泡的欧拉-拉格朗日形状方程及其边界条件。通过双向“打靶法”数值求解了两组分膜泡在确定边界条件下的形状方程,计算了不同平均曲率模量比εκ和线张力系数λ下的平衡形状。阐述了不同εκ和λ下平均曲率模量不相同的两组分膜泡的形状变化,导致这种变化的原因是膜泡两组分的曲率能和线张力能相互竞争的结果。计算结果说明数值计算方法合理可行,此数值解可进一步研究与实验相关的两组分膜泡问题。
关键词:
两组分膜泡; 欧拉-拉格朗日方程; 平均曲率模量
收稿日期:
2015-01-21
中图分类号:
O411.3
文献标识码:
A
文章编号:
1672-4291(2015)05-0043-05
基金项目:
国家自然科学基金(10374063);中央高校基本科研业务费专项资金(GK261001071)
Doi:
The numerical solutions of shape equation of two-domain vesicles with different bending rigidity
ZHOU Wubin, ZHANG Shaoguang*
(School of Physics and Information Technology, Shaanxi Normal University,Xi′an 710119, Shaanxi, China)
Abstract:
The Euler-Lagrange shape equation and boundary conditions of two-domain vesicles which have different curvature modulus with rotational symmetry are investigated by variational method. Then the numerical solutions of shape equation of two-domain vesicles under definite boundary conditions are obtained through shooting method. The equilibrium shape at different εκ and different line tension coefficient λ are confirmed.The shape change of two-domain vesicles which have different curvature modulus is find at the different εκ and λ.The reason of such phenomenon is bending energy and tension energy of two-domain vesicles competing with each other. The results show that the numerical method is reasonable for study the equilibrium shape of two-domain vesicles, which help for further study of experiment-related problems for two-domain vesicles with different curvature modulus.
KeyWords:
two-domain vesicles; Euler-Lagrange equation; mean curvature modulus