自然科学版
陕西师范大学学报(自然科学版)
物理学
基于LBP与CS-LDP自适应特征融合的人脸识别
PDF下载 ()
李闻, 陈熙*, 刘增力, 黄青松
(昆明理工大学 信息工程与自动化学院, 云南 昆明 650500)
李闻,女,硕士研究生,研究方向为图像处理。E-mail:253188536@qq.com
摘要:
为了提取更丰富的人脸纹理特征以提高人脸识别率,提出了局部二值模式LBP(Local Binary Pattern)与中心对称局部微分模式CS-LDP (Center-Symmetric Local Derivative Pattern)自适应特征融合算法。识别过程中首先用LBP算法对原始图像进行特征提取,然后用二阶微分CS-LDP算法对图像进行特征提取,并将LBP与CS-LDP的特征向量融合得到最终的模板向量,通过直方图交叉距离计算模板向量的相似度。结果表明:LBP提取图像的一阶微分特征,而CS-LDP提取图像的二阶微分特征,融合两种特征获得更丰富的图像纹理信息。该方法在ORL、YaleB和FERET人脸库中的人脸识别率均达到了90%以上,为人脸识别技术提供了一种切实可行方案。
关键词:
LBP;CS-LDP;特征融合;人脸识别
收稿日期:
2014-12-08
中图分类号:
TP391.41
文献标识码:
A
文章编号:
1672-4291(2015)04-0048-06doi:10.15983/j.cnki.jsnu.2015.04.245
基金项目:
国家自然科学基金(61262040,81360230);云南省应用基础研究计划(KKSY201203062)
Doi:
Face recognition based on self-adaptive fusion of LBP and CS-LDP
LI Wen, CHEN Xi*, LIU Zengli, HUANG Qingsong
(School of Information Engineering and Automation, Kunming Science and Technology University, Kunming 650500, Yunnan, China)
Abstract:
In order to extract richer facial texture feature and improve the accuracy of face recognition, a hybrid method of local binary pattern (LBP) and center-symmetric local derivative pattern(CS-LDP) algorithm is proposed. The LBP is utilized to extract the first level features from the original face image. Then using CS-LDP method, the features are extracted from images processed by LBP.Furthermore, the features calculated by LBP and CS-LDP are combined to obtain the final texture features. The Histogram intersection distance is calculated to find the similarity degree between two texture features vectors.The results show that LBP extracts the first-order differential features of image, while CS-LDP extracts the second order differential feature. Fusing such two features can obtain richer texture information. The mean recognition accuracy reaches above 90% on ORL, YaleB and FERET face databases, which provides a feasible scheme for practical face recognition.
KeyWords:
LBP; CS-LDP; feature fusing; face recognition