自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
可压缩Navier-Stokes方程的球对称经典解
PDF下载 ()
王梅, 方莉
(西北大学 数学学院, 陕西 西安 710127)
王梅,女,博士研究生,主要研究方向为流体力学中的偏微分方程理论。E-mail:wangmei0439@163.com
摘要:
可压缩Navier-Stokes方程反映着流体力学研究的前沿, 为了对其Vaigant-Kazhikhov模型的解进行深入研究, 借鉴并推广了相关文献关于二维方程密度估计的方法到三维球对称情形,证明了外区域中Cauchy问题的球对称经典解的适定性。 证得当黏性系数λ(ρ)=ρβ时,β>14/5以及当初始密度远离真空状态时, 解在有限时间段内也不会出现真空状态。
关键词:
可压缩Navier-Stokes方程; 三维球对称; Cauchy问题; 全局适定性
收稿日期:
2014-12-14
中图分类号:
O175
文献标识码:
A
文章编号:
1672-4291(2015)04-0001-05doi:10.15983/j.cnki.jsnu.2015.04.141
基金项目:
陕西省自然科学基础研究计划(2012JQ1020)
Doi:
The classical solutions to the spherically symmetric compressible Navier-Stokes equations
WANG Mei, FANG Li
(School of Mathematics, Northwest University, Xi′an 710127, Shaanxi, China)
Abstract:
The compressible Navier-Stokes equations has an important position in the progress of fluid mechanics.In order to research the Vaigant-Kazhikhow model,the methods of related articles in 2D are referenced and the results of the 3D spherically symmetric situation are obtained.It is proved that the global well-posedness of the classical solution to the Cauchy problem of spherically symmetric compressible Navier-Stokes equations in an exterior domain.When the bulk viscosity λ(ρ)=ρβ,β>14/5,it is shown that the solution will not develop the vacuum states in any finite time provided the initial density is uniformly away from vacuum.
KeyWords:
compressible Navier-Stokes equations; 3D spherically symmetric; Cauchy problem; global well-posedness