自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
W-代数偏序集及其性质
PDF下载 ()
折海芳, 赵彬*
(陕西师范大学 数学与信息科学学院, 陕西 西安 710119)
折海芳,女,硕士研究生,研究方向为格上拓扑与模糊推理。E-mail: shehaifang123@126.com
摘要:
引入了W-引代数偏序集与强W-代数偏序集的概念。讨论了W-代数偏序集、Exact偏序集以及代数偏序集的关系,证明了W-代数偏序集在保定向并的单的核算子下的像是W-代数偏序集。最后得到了每一点有最小局部基的弱Domain是强W-代数Domain,证明了弱Domain上的Scott连续映射保局部基当且仅当它保Weakly way below关系。
关键词:
W-代数偏序集; 代数偏序集;Exact偏序集; 弱Domain; 局部基
收稿日期:
2014-09-09
中图分类号:
O153.1
文献标识码:
A
文章编号:
1672-4291(2015)03-0013-05doi:10.15983/j.cnki.jsnu.2015.03.134
基金项目:
国家自然科学基金资助项目(11171196,11301316); 中央高校基本科研业务费专项资金项目(GK201302003)
Doi:
W-algebraic poset and its properties
SHE Haifang, ZHAO Bin*
(School of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
Abstract:
The concepts of W-algebraic poset and strong W-algebraic poset are introduced.The relationship among W-algebraic poset,Exact poset and algebraic poset is investigated.The image of a W-algebraic poset under an injective kernel operator preserving sups of directed sets is W-algebraic poset.It is shown that it is a strong W-algebraic domain if every point of a weak domain has a minimum local basis.It is also shown that a Scott continuous mapping of a weak domain preserves local basis if and only if it preserves Weakly way below relation.
KeyWords:
W-algebraic poset; algebraic poset; Exact poset; weak domain; local basis