自然科学版
陕西师范大学学报(自然科学版)
食品工程与营养科学
近红外光谱技术检测石榴汁中花色苷含量
赵武奇, 乔瑶瑶, 王晓琴, 张清安
(陕西师范大学 食品工程与营养科学学院, 陕西 西安 710119)
赵武奇,男,副教授,博士,主要从事食品加工新技术方面的研究。E-mail:zwq65@163.com
摘要:
以不同产地的石榴汁样品为对象, 对其近红外光谱数据进行预处理并通过小波变化处理提取光谱特征, 采用遗传算法对支持向量机的三个参数进行优化,建立基于近红外光谱技术与支持向量机的石榴汁中花色苷含量检测模型。结果表明,模型对验证集的均方根误差为0.019 766,决定系数为0.999 2,模型预测性能良好。近红外光谱技术可用于石榴汁中花色苷含量的定量检测。
关键词:
近红外光谱; 石榴汁; 花色苷; 支持向量机
收稿日期:
2014-05-29
中图分类号:
S665.4
文献标识码:
A
文章编号:
1672-4291(2015)02-00099-04doi:10.15983/j.cnki.jsnu.2015.02.424
基金项目:
陕西省自然科学基础研究计划项目(2011JM3011)
Doi:
Study on determination of anthocyanin content in pomegranate juice by near infrared spectroscopy
ZHAO Wuqi, QIAO Yaoyao, WANG Xiaoqin, ZHANG Qingan
(School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China )
Abstract:
Pomegranate juices from different origins were served as the sample. Preprocessing method of near infrared spectroscopy data were determined and the feature were extracted by wavelet analysis. The three parameters of support vector machine (SVM) were optimized by genetic algorithms(GA).The model for determination of anthocyanin content in pomegranate juice by near infrared spectroscopy and support vector machine was established. The result showed that the model had the predication performance, the root mean square error of the validation and the determination coefficients were 0.019 766 and 0.999 2. Near-infrared spectroscopy technology could be used for the quantitative detection of anthocyanin content in pomegranate juice.
KeyWords:
near infrared spectroscopy; pomegranate juice; anthocyanin; support vector machine