自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
具有时滞和不同潜伏阶段的艾滋病模型的Hopf分支
PDF下载 ()
尹锦锦 胡志兴*
(北京科技大学 数理学院, 北京 100083)
尹锦锦,女,硕士研究生,研究方向为传染病动力学模型.Email: lzhwyjj@126.com.
摘要:
研究了具有不同潜伏阶段和时滞的艾滋病模型. 在模型中, 一些感染个体可以通过治疗从有症状阶段转移到无症状阶段.得到模型的基本再生数R0, 当R0<1时, 在一定条件下无病平衡点E0是局部渐近稳定的;当R0>1时,给出疾病平衡点E*局部稳定的充分条件;时滞影响疾病平衡点E*的稳定性,并产生Hopf分支现象.用分支理论研究Hopf分支周期解的稳定性,数值模拟验证了结论的正确性.
关键词:
基本再生数; 时滞; 稳定性; Hopf分支; 周期解
收稿日期:
2014-04-04
中图分类号:
O175.13
文献标识码:
文章编号:
1672-4291(2014)05000606
基金项目:
国家自然科学基金资助项目(61174209); 北京科技大学冶金工程研究院基础研究基金资助项目(YJ2012001).
Doi:
Hopf bifurcation of an AIDS model with time delay and different latent stages
YIN Jinjin, HU Zhixing*
(School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China)
Abstract:
An acquired immune deficiency syndrome(AIDS) model with different latent stages and time delay is investigated. The model allows some infected individuals to move from the symptomatic phase to the asymptomatic phase by all sorts of treatment methods. The basic reproduction number R0 is defined.When R0<1 , the diseasefree equilibrium e0 is locally asymptotically stability in a special case. when r0>1, the sufficient conditions for the local stability of the infected equilibrium E* are obtained. The time delay can change the stability of the infected equilibrium E* and lead to the existence of Hopf bifurcation. The stability of bifurcating periodic solutions is also studied by the theory of Hopf bifurcation. Numerical simulations check out the obtained theory.
KeyWords:
basic reproduction number; time delay; stability; Hopf bifurcation; periodic solution