自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
几类效应代数的张量积及其可表示性
PDF下载 ()
孟会贤 曹怀信*
(陕西师范大学 数学与信息科学学院, 陕西 西安 710119)
孟会贤,女,硕士研究生,研究方向为算子代数与量子信息.Email:menghuixian@stu.snnu.edu.cn.
摘要:
研究了几类效应代数的张量积及其可表示性.证明了两个效应代数关于不同的双态射的张量积是同构的,通过构造适当的双态射,给出效应代数{0,1}E、Cm(a)Cn(b)、C2(x)C4(y,z)及C2(x)C′4(y,z)的具体形式,结果表明:{0,1}E是可表示的当且仅当E是可表示的,Cm(a)Cn(b)与C2(x)C4(y,z)都是可表示的效应代数,但C2(x)C′4(y,z)是不可表示的效应代数.
关键词:
效应代数; 张量积; 可表示性
收稿日期:
2014-02-20
中图分类号:
O177.1
文献标识码:
文章编号:
1672-4291(2014)05-000105
基金项目:
国家自然科学基金资助项目(11371012, 11171197).
Doi:
Tensor products of several effect algebras and their representability
MENG Huixian, CAO Huaixin*
(College of Mathematics and Information Science,Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
Abstract:
Tensor products of several effect algebras and their representability are discussed.It is proved that any two tensor products of two effect algebras with respect to different bimorphisms are isomorphic.By constructing proper bimorphisms,the tensor products of effect algebras{0,1} and E,Cm(a) and Cn(b),C2(x) and C4(y,z),C2(x) and C′4(y,z) are given.Obtained results show that {0,1}E is representable if and only if E is representable,both Cm(a)Cn(b) and C2(x)C4(y,z) are representable,but C2(x)C′4(y,z) is not representable.
KeyWords:
tensor product; effect algebra; representability