自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
基于非负矩阵分解最小二乘的多视角行人分类算法
PDF下载 ()
张英, 孙浩*,计科峰
(国防科学技术大学 电子科学与工程学院, 湖南 长沙 410073)
张英,男,硕士研究生,主要研究方向为图像分析与信息融合.E-mail:13647323167@163.com.
摘要:
针对不同视角的行人样本具有较大的类内差异性,造成多视角行人识别错误率较高的问题,提出一种基于非负矩阵分解最小二乘的多视角行人分类算法.采用非负矩阵分解的方法对多视角的行人样本图像进行子空间分解,提取基向量;引入协同表示的方法并在最小二乘约束下,对子空间进行稀疏表示获得稀疏分解系数;利用近邻子空间方法对分解系数进行分类.基于自行构建的多视角行人数据库进行对比实验,结果表明该算法的准确性和有效性优于其他方法.
关键词:
非负矩阵分解; 非负最小二乘; 稀疏表示; 多视角分类
收稿日期:
2014-03-28
中图分类号:
TP391.41
文献标识码:
A
文章编号:
1672-4291(2014)04-0010-06
基金项目:
国家自然科学基金资助项目(61303186); 国防科技大学优秀学位论文选题资助项目(43451332142).
Doi:
Multi-view pedestrian classification algorithm via non-negative least square
ZHANG Ying, SUN Hao*, JI Kefeng
(College of Electrical Science and Engineering, National University of Defense Technology, Changsha 410073, Hunan,China)
Abstract:
Multi-view pedestrian samples have so high intra-class variance that multi-view pedestrian classification suffers from high classification error. To solve this problem, a novel multi-view pedestrian recognition algorithm is proposed in this paper based on non-negative matrix factorization (NMF) and least square.Firstly, by using the NMF, the subspace of multi-view pedestrian samples is acquired and base vectors are extracted. Secondly, by introducing the collaborative representation the sparse presentation of the subspace is performed and then constrained by the least square,sparse coefficients are obtained. Finally, multi-viewpoint classification is completed by using sparse coefficients based on the nearest subspace rule. The comparison experimental results on the self-established multi-view pedestrian dataset show that the proposed method outperforms several state-of-the-art methods in terms of accuracy and effectiveness.
KeyWords:
non-negative matrix factorization; non-negative least square; sparse representation; multi-view classification