自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
一类捕食-食饵模型共存解的存在性与稳定性
PDF下载 ()
袁海龙, 李艳玲*
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
袁海龙, 男, 硕士研究生, 主要研究方向为反应扩散方程理论及其应用. E-mail: 422055696@163. com.
摘要:
研究了一类具有Holling Ⅲ型捕食-食饵模型平衡态正解的存在性与稳定性.利用锥上的不动点理论给出正解存在的充分条件;讨论了m充分大时, 借助上下解方法构造出模型的正解,并根据线性稳定性理论讨论了该正解的稳定性. 结果表明:当参数a>λ1,c>λ1-dθ2a1+mθ2a时,共存解存在, 且当c>λ1时, 共存解是线性稳定的.
关键词:
捕食-食饵模型; 稳定性; 不动点指数
收稿日期:
2013-03-14
中图分类号:
O175.26
文献标识码:
A
文章编号:
1672-4291(2014)01-0015-04
基金项目:
国家自然科学基金资助项目(11271236); 教育部高等学校博士学科点专项科研基金项目(200807180004).
Doi:
Coexistence of existence and stability of a predator-prey model
YUAN Hailong, LI Yanling*
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
The existence and stability of positive solutions are investigated for a predator-prey model with Holling type Ⅲ functional response. By using the fixed point index in cones, one can reduce the sufficient conditions for any possible positive solutions. When m is suitably large,by the super-sub solution method for predator-prey systems, the positive solutions and the stability of the positive solutions are studied by using the linearized stability.It is shown that the models has coexistence solutions when a>λ1,c>λ1-dθ2a1+mθ2a and the coexistence solution is linear stability if c>λ1.
KeyWords:
predator-prey model; stability; fixed point index