自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
7人参与的一类超图存取结构的最优信息率
PDF下载 ()
李志慧, 杨丽杰
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
李志慧,女,教授,博士,研究方向为有限域和密码学.E-mail:lizhihui@snnu.edu.cn.
摘要:
运用存取结构与连通超图之间的关系,将7人参与的一类存取结构转化为连通超图中顶点数为7的一类共94种超图存取结构,研究了最优信息率及其所对应的完善秘密共享方案的构造.运用超图理论及方法对其中80种超图存取结构最优信息率的精确值进行了计算,并给出达到此信息率的秘密共享方案的具体构造方法;对其余的14种超图存取结构运用λ-分解等方法给出最优信息率的上下界.证明了具有n个顶点且秩为r的超图,其超边数至少为(n-r)/(r-1)+1条,至多为Crn条;并从理论上证明了满足一定条件的顶点数为n(4≤n≤9),超边数为4且秩为3的非理想超图的最优信息率为2/3.
关键词:
完善的秘密共享方案; 存取结构; 超图; 超图存取结构; 最优信息率
收稿日期:
2013-06-18
中图分类号:
O157.6; TP309.7
文献标识码:
A
文章编号:
1672-4291(2014)01-0001-06
基金项目:
国家自然科学基金资助项目(61373150); 陕西省科学技术研究发展计划工业攻关项目(2013K0611).
Doi:
The optimal information rate of a type of access structures based on hypergraphs on seven participants
LI Zhihui, YANG Lijie
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
Through transforming the access structures on seven participants to a total of 94 connected hypergraphs on seven vertices, the optimal information rate and the construction of perfect secret sharing schemes corresponding to these access structures are given in terms of the relationship between access structures and connected hypergraphs. The exact values for the optimal information rate of the 80 access structures are computed by using hypergraph theory and method, and the relevant construction of perfect secret sharing schemes is discussed. The upper and lower bounds on the information rate of other 14 access structures based on hypergraphs are given by using λ-Decomposition method and so on. At the same time, it is shown that the hypergraph with n vertices and r rank has at least (n-r)/(r-1)+1 edges, and at most Crn edges, and that the optimal information rates of the non-ideal hypergraphs with n(4≤n≤9) vertices and r ranks are all equal to 2/3 if they meets certain conditions.
KeyWords:
perfect secret sharing scheme; access structure; hypergraph; hypergraph access structure; optimal information rate