自然科学版
陕西师范大学学报(自然科学版)
物理学
EM-ACO算法及其在多重超声回波参数估计中的应用
PDF下载 ()
周方1,2, 张小凤2*
(1 陕西师范大学 应用声学研究所, 陕西 西安 710062;2 石河子大学 信息科学与技术学院, 新疆 石河子 832003)
周方,女,硕士,研究方向为超声信号处理.E-mail:zhoufangah@stu.snnu.edu.cn.
摘要:
针对EM算法在估计多重超声回波参数时存在收敛速度慢和迭代结果强烈依赖于初始值的缺点,将蚁群算法应用到多重超声回波参数估计的EM算法中,提出一种新的多重超声回波参数估计算法——EM-ACO算法.该算法结合EM算法和蚁群算法的优点,不仅可以改善EM算法估计多重超声回波参数时估计结果强烈依赖于初始值的缺点,有效提高EM算法的收敛速度,而且可以获得更高的参数估计精度.根据超声回波的高斯回波模型,应用EM-ACO算法,在不同的信噪比条件下,对多重超声回波的参数向量组进行估计.仿真结果表明:EM-ACO算法能在各种不同的初始值条件下,以较少的迭代次数估计出多重超声回波的参数向量组,并且具有较高的估计精度.
关键词:
EM算法; 蚁群算法; 参数估计; 高斯回波模型; 多重超声回波
收稿日期:
2013-04-23
中图分类号:
TN912.16
文献标识码:
A
文章编号:
1672-4291(2013)06-0027-06
基金项目:
陕西省自然科学基金资助项目(2012JM1013); 中央高校基本科研业务费专项资金项目(GK201302049).
Doi:
EM-ACO algorithm and its application to parameters estimate of multiple ultrasonic echoes
ZHOU Fang1,2, ZHANG Xiao-feng2*
(1 Institute of Applied Acoustics, Shaanxi Normal University, Xi′an 710062, Shaanxi,China;2 College of Information Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China)
Abstract:
Aiming at the defects that the convergence speed is so slow and the iterative results depend on the initial values seriously in the application of EM algorithm estimated the parameters of multiple ultrasonic echoes, a new method for parameters estimation of multiple ultrasonic echoes: EM-ACO algorithm is proposed, which combines the advantages of ant colony algorithm and EM algorithm. The new algorithm can not only obtain the good results at different initial guesses and improves the convergence speed of EM algorithm significantly, but also achieve a higher precision. According to Gaussian Echoes model, this new algorithm is applied to the parameters estimation of multiple ultrasonic echoes for different signal to noise ratio(SNRs). The simulation results show that EM-ACO algorithm can successfully estimate the parameters of multiple ultrasonic echoes with fewer iterations and has a higher precision in conditions of all sorts of different initial values.
KeyWords:
EM algorithm; ant colony algorithm; parameters estimation; gaussian echo model; multiple ultrasonic echoes