自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
用改进的双曲正切法求解KP方程新的精确解
PDF下载 ()
张英, 李晓燕, 姚若侠*
(陕西师范大学 计算机科学学院, 陕西 西安 710062)
张英,女,硕士研究生, 研究方向为符号计算和可积系统. E-mail:zhangying1612@126.com.
摘要:
提出一种改进的用以求解非线性偏微分方程新类型精确解的双曲正切函数求解算法,并给出其符号计算方法和实现步骤的归纳描述. 基于该新方法,研究了非线性系统中经典Kadomtsev-Petviashvili(KP)方程新的孤立波形式精确解构造. 结果表明,该方法可以有效求解非线性偏微分方程新的形式复杂的精确解.
关键词:
KP方程; 双曲正切函数方法; 符号计算; 行波变换; 精确解
收稿日期:
2013-03-14
中图分类号:
O175.6
文献标识码:
A
文章编号:
1672-4291(2013)05-0001-04
基金项目:
国家自然科学基金资助项目(11071278, 11172342); 中央高校基本科研业务费专项资金项目(GK201302026).
Doi:
New exact solutions to the KP equation using modified tanh-function method
ZHANG Ying, LI Xiao-yan, YAO Ruo-xia*
(College of Computer Science,Shaanxi Normal University,Xi′an 710062,Shaanxi,China)
Abstract:
A modified hyperbolic tangent function method is proposed and the corresponding symbolic computation approach and its implementation procedure are presented in order to construct new type of exact solutions to nonlinear partial differential equations. Exact solitary wave solutions with new forms to the classical Kadomtsev-Petviashvili equation are obtained by using the proposed new method. The obtained results demonstrate the effectiveness of the method in constructing new and complex exact solutions of nonlinear partial differential equations.
KeyWords:
KP equation; hyperbolic tangent method; symbolic computation; travelling wave transformation; exact solution