自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
社交网络的SEIJR知识传播模型
PDF下载 ()
汪林1,2, 刘丹青2, 裘国永2, 吴振强1,2*
(1 现代教育技术教育部重点实验室, 陕西 西安 710062;2 陕西师范大学 计算机科学学院, 陕西 西安 710119)
吴振强,男,教授,博士生导师。E-mail:zqiangwu@snnu.edu.cn
摘要:
结合流行病动力学模型,构建了知识在社交网络上传播的具有时滞、体系化特性和超级传播机制的SEIJR模型,该模型基于学习者知识增长的“解构-建构”特性以及社交网络用户的行为特征,分析了知识在社交网络上的传播机理,得出动力学方程,通过仿真分析了知识随时间的变化规律。分析表明,SEIJR模型较准确地刻画了知识在社交网络上的传播过程。
关键词:
社交网络; 知识传播; SEIJR模型; 动力学方程
收稿日期:
2016-01-08
中图分类号:
TP393.4
文献标识码:
A
文章编号:
1672-4291(2017)01-0023-07doi:10.15983/j.cnki.jsnu.2017.01.114
基金项目:
国家自然科学基金(61173190); 中央高校基本科研业务费专项资金(GK201501008,GK261001236,GK200902018)
Doi:
SEIJR model for knowledge spreading over SNS
WANG Lin1,2, LIU Danqing2, QIU Guoyong2, WU Zhenqiang1,2*
(1 Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi′an 710062, Shaanxi, China;2 School of Computer Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
Abstract:
A SEIJR model is established which have time-delay,systematic and super transmission mechanism for knowledge spreading on social network, originating from the model of infectious diseases. Analyses are given with the model of the propagation mechanism on the processes of knowledge spreading, based on the growth of knowledge in the features of "deconstruction and construction" and users′ behavioral characteristics, dynamic evolution equations are deduced and the temporal evolution rules of the processes of knowledge spreading are elaborated. The result of simulation shows that the SEIJR presented is capable of describing the processes of knowledge spreading over the SNS.
KeyWords:
social network; knowledge spreading; SEIJR model; dynamic equation