自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
迁移系统关于一类时态逻辑公式的满足度
PDF下载 ()
王国俊1, 王庆平2, 时慧娴1, 罗清君1,3, 王伟4
( 1 陕西师范大学 数学与信息科学学院, 陕西 西安 710062; 2 江西财经大学 统计学院, 江西 南昌 330013; 3 西安财经学院 统计学院, 4 西安财经学院 信息与教育技术中心, 陕西 西安 710061 )
王国俊, 男, 教授, 博士研究生导师, 研究方向为不确定性推理和计量逻辑学. E-mail: gjwang@snnu.edu.cn.
摘要:
从分析Words(φ)的结构入手,引入用线性时态逻辑(LTL)公式φ表示的规范的特征概念, 证明了一类LTL公式特征的存在性定理以及特征的计算方法. 引入了LTL公式的T-范式概念, 证明了这类LTL公式均可等价地表示为T-范式的形式, 从而为简化φ的特征计算奠定了基础. 引入了迁移系统TS关于给定规范φ的满足度概念, 证明了TS关于φ的满足度等于1当且仅当TS满足φ.对于给定的原子公式集AP, 给出了满足度计算的复杂度估计.
关键词:
规范; 特征; 最终自由; 动态模型序列; T-范式; 满足度
收稿日期:
2013-03-29
中图分类号:
O141.1
文献标识码:
文章编号:
1672-4291(2013)04-0001-10
基金项目:
国家自然科学基金资助项目(10771129,11171200).
Doi:
Satisfaction degree for a class of temporal logic formulae based on transition systems
WANG Guo-jun1, WANG Qing-ping2, SHI Hui-xian1, LUO Qing-jun1,3, WANG Wei4
( 1 College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China;2 School of Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, Jiangxi, China;3 School of Statistics, Xi′an University of Finance and Economics, 4 Center of Information and Education Technology, Xi′an University of Finance and Economics, Xi′an 710061, Shaanxi, China)
Abstract:
The concept of a character for lineal temporal logic (LTL, for short) formulae is introduced, and the existence of characters for a class of LTL formulae as well as the computation method are obtained. Based on this concept, two types of temporal normal form for LTL formulae are proposed, and it is proved that a class of LTL formulae can be equivalently expressed in temporal normal form, which greatly simplifies the complexity of computing of characters. Meanwhile, the satisfaction degree of LTL formulae with respect to transition systems are proposed, which can be seen as a quantitative extension of the notion “TS satisfies φ”. Finally, a computation method of the satisfaction degree for a LTL formula is provided, and the computation complexity is estimated.
KeyWords:
specification; character; eventually free; dynamic model sequence; temporal normal form; satisfaction degree