自然科学版
陕西师范大学学报(自然科学版)
旅游经济研究专题
基于游线大数据的西北地区旅游流空间网络结构及影响因素
PDF下载 ()
孙一鸣1,刘培学2*,张建新1,魏瑞兵1
(1 南京大学 地理与海洋科学学院,江苏 南京 210023; 2 南京财经大学 工商管理学院,江苏 南京 210023)
刘培学,男,讲师,博士,主要从事大数据与流空间研究。 Email:lpx1555@gmail.com
摘要:
大数据有助于细致揭示目的地区域内旅游者的迁移模式与空间特征。基于在线订购平台获取的游线大数据,采用社会网络分析方法研究西北地区旅游者流动和目的地间联系的网络及空间特征,挖掘区域社群结构,分析游线流量影响因素。结果表明:西北地区旅游流网络整体上松散且不均衡,具有明显的核心区和边缘区,边缘区主要集中在新疆西部、陕西大部分地区和甘南地区,核心区主要分布在河西走廊;西北地区内部由少部分节点掌握绝对网络权力,节点层级分明,各级节点对核心节点兰州、西安、乌鲁木齐的网络依赖性较高;西北旅游网络围绕着核心节点形成3个二级社群和8个三级社群,社群内部表现出较强的地域邻近性和行政地域性;西北地区旅游流受到目的地旅游资源禀赋、旅游接待能力、地区经济水平、交通基础设施等多方面的影响。最后,结合西北地区旅游流网络结构特征及影响因素,提出旅游升级及区域发展的相关建议。
关键词:
旅游流;网络结构;空间格局;西北地区;在线订购数据
收稿日期:
2022-12-17
中图分类号:
F592.7
文献标识码:
A
文章编号:
16724291(2023)06012311
基金项目:
国家自然科学基金青年项目(42001145);教育部人文社会科学研究项目(20YJC790080,22YJA760106)
Doi:
10.15983/j.cnki.jsnu.2023136
Spatial network structure and influencing factors of tourism flow in Northwest China based on online ordering data
SUN Yiming1, LIU Peixue2*, ZHANG Jianxin1,WEI Ruibing1
(1 School of Geography and Ocean Science,Nanjing University, Nanjing 210023, Jiangsu, China; 2 School of Business Administration, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China)
Abstract:
Big data helps to reveal the migration patterns and spatial characteristics of tourists in the destination area in detail. Northwest China is the main destination region of Chinas “Silk Road”. Based on extensive travel route data obtained from online booking platforms, this paper employs social network analysis to study the network and spatial characteristics of tourist flows and connections between destinations in Northwest China. It aims to uncover regional community structures and analyze the factors influencing touring route. The results indicate that the tourist flow network in Northwest China is loose and unbalanced, with distinct core and peripheral areas. The peripheral areas are mainly located in western Xinjiang, most of Shaanxi, and southern Gansu, while the core areas are mainly distributed in Hexi Corridor. In Northwest China, a small number of nodes possess absolute network power, demonstrating clear hierarchical levels. Nodes at all levels are highly dependent on core nodes such as Lanzhou, Xian, and Urumqi. The Northwest tourism network is composed of 3 secondary communities and 8 tertiary communities around the core nodes. These communities demonstrate strong regional proximity and administrative regionalism within their internal structures. Tourism flow in Northwest China is influenced by various factors, including the tourism resources endowment, tourism reception capacity, regional economic levels, transportation infrastructure, and more. Finally, taking into consideration the characteristics of the Northwest China tourist flow network and the factors influencing it, this paper offers relevant recommendations for tourism enhancement and regional development.
KeyWords:
tourist flow; network structure; spatial pattern; Northwest China; online ordering data