自然科学版
陕西师范大学学报(自然科学版)
人工智能专题
自适应图正则化稀疏编码算法
PDF下载 ()
余沁茹1,卢桂馥2*,李华2
(1 芜湖职业技术学院, 安徽 芜湖 241000; 2 安徽工程大学 计算机与信息学院,安徽 芜湖 241009)
卢桂馥,男,教授,博士,主要从事模式识别、机器学习与计算机视觉等方面的研究。E-mail: luguifu_jsj@163.com
摘要:
在GraphSC算法中,拉普拉斯图是预先定义并且固定不变的,并不会参与之后对于字典与稀疏编码的学习过程,而预先定义的拉普拉斯图往往不是最合适的。针对此问题,提出了自适应正则化稀疏编码(graph regularization sparse coding with adaptive neighbour,GraphSCAN)算法。该算法使用自适应方法构建合适的局部拉普拉斯图,然后将其加到SC的目标函数中;从而将图的构建和稀疏编码纳入到统一框架中,使得图的构建与稀疏编码的运算同时迭代进行。在CMU人脸数据与COIL20数据上进行的图像聚类实验结果验证了GraphSCAN算法的有效性。
关键词:
图正则化;稀疏编码;图聚类;自适应聚类
收稿日期:
2022-01-20
中图分类号:
TP391
文献标识码:
A
文章编号:
1672-4291(2023)05-0075-09
基金项目:
国家自然科学基金(61976005,61772277);安徽省自然科学基金(1908085MF183)
Doi:
10.15983/j.cnki.jsnu.2023029
Graph regularization sparse coding with adaptive neighbour
YU Qinru1, LU Guifu2*, LI Hua2
(1 Wuhu Institute of Technology, Wuhu 241000, Anhui, China;2 School of Computer and Information, Anhui Polytechnic University, Wuhu 241009, Anhui, China)
Abstract:
In the GraphSC algorithm, the Laplacian graph is pre-defined and fixed, and will not participate in the subsequent learning process of the dictionary and sparse coding, the pre-defined Laplacian graph isnt the most suitable. Graph regularization sparse coding with adaptive neighbour algorithm (GraphSCAN) is proposed to solve the problem.The algorithm uses an adaptive method to construct a suitable local Laplacian graph, and then adds it to the SC objective function. GraphSCAN incorporates graph construction and sparse coding into a unified framework, so that graph construction and sparse coding operations are iteratively performed simultaneously. The experimental results of image clustering on CMU face data and COIL20 data support the effectiveness of the GraphSCAN algorithm.
KeyWords:
graph regularization; sparse coding; image clustering; adaptive clustering