自然科学版
陕西师范大学学报(自然科学版)
人工智能专题
一种增强的3D人脸替换方法
PDF下载 ()
蒋珂1,谭晓阳1,2*
(1 南京航空航天大学 计算机科学与技术学院, 江苏 南京 210000;2 模式分析与机器智能工业和信息化部重点实验室(南京航空航天大学), 江苏 南京 210000)
谭晓阳,男,教授,博士生导师,主要从事机器学习、强化学习、计算机视觉等方面的研究。E-mail: x.tan@nuaa.edu.cn
摘要:
针对3D人脸重建方法在贴图时忽视对纹理处理的设计,仅进行仿射变换和插值,其中仿射变换会导致其生成图像的高频分量遭到损坏,尤其是给出嘴部姿态不同的源、目标人像时,会造成人像的嘴部纹理缺失,而插值方法会造成灰度不连续现象;提出一种增强的3D人脸替换方法,称为基于生成-重建的人脸替换(generative reconstructed face swap,GRFS)。GRFS将对抗生成网络应用于对3D人脸替换结果的纹理修复,包括两个子网络:嘴部修复网络(mouth restoration network,MRN)以及局部修复生成网络(generative local restoration network,GLRN)。MRN用于修复人像的嘴部细节,GLRN用于修复3D人脸重建过程中损坏的高频分量,并使得异常的不连续灰度变得光滑。实验结果表明,GRFS可以在给定单对源、目标人像的情况下生成逼真的人脸替换结果,且在不同实验环境下的表现好于主流人脸替换算法。
关键词:
人脸替换; 3D人脸重建; 纹理修复; 生成对抗网络; 自监督学习
收稿日期:
2022-01-20
中图分类号:
TP391
文献标识码:
A
文章编号:
1672-4291(2023)05-0067-08
基金项目:
国家自然科学基金(61732006,61976115);南航“人工智能+”项目(NZ2020012,56XZA18009)
Doi:
10.15983/j.cnki.jsnu.2023028
An enhanced 3D face swapping method
JIANG Ke1 , TAN Xiaoyang1,2*
(1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, Jiangsu, China;2 MIIT Key Laboratory of Pattern Analysis and Machine Intelligence(NUAA),Nanjing 210000, Jiangsu, China)
Abstract:
Face swapping transforms a source identity into a target image while preserving other important attributes. 3D face reconstruction is an efficient method for face swapping. However, the transformed images by 3D face reconstruction characterize with distortion of high-frequency components and abnormal discontinuity of hue value.In this paper, a face swapping framework based on fine texture restoration is proposed, referred to as GRFS, to address this issue on 3D face reconstruction. GRFS involves two texture restoring modules as follows: mouth restoration network restores mouth details of 3D face reconstruction results; generative local restoration network restores the distortion of high-frequency components and smooths the gaps of hue value. Extensive experiments demonstrate that GRFS performs better than traditional 3D face reconstruction based face swapping methods and balances the quality and efficiency better than other mainstream face swapping frameworks.
KeyWords:
face swap; 3D face reconstruction; texture restoration; generative adversarial network; self-supervised learning