自然科学版
陕西师范大学学报(自然科学版)
人工智能专题
融合双重注意力机制的多源深度推荐模型
PDF下载 ()
刘笑笑1,谢珺1*,续欣莹2,潘华莉1
(1 太原理工大学 信息与计算机学院,山西 晋中 030600;2 太原理工大学 电气与动力工程学院,山西 太原 030000)
谢珺,女,副教授,博士,主要从事粗糙集、智能信息处理、个性化推荐等方面的研究。E-mail: xiejun@tyut.edu.cn
摘要:
针对评分数据稀疏导致协同过滤算法推荐质量下降的问题,通过充分挖掘评论信息增强推荐性能,提出了一种融合双重注意力机制的多源深度推荐模型(MSDA)。该模型基于评分数据、用户评论集和商品评论集3个信息源进行推荐,结合卷积神经网络和双重注意力机制挖掘评论文本特征,利用神经因子分解机进行评分和评论特征之间的高阶非线性交互,从而实现评分预测。实验结果表明,相比于NeuMF、NARRE、HRDR等先进基准方法,MSDA显著提升了模型的评分预测性能。
关键词:
数据稀疏性;评论文本;深度学习;评分预测
收稿日期:
2022-08-05
中图分类号:
TP391
文献标识码:
A
文章编号:
1672-4291(2023)05-0049-11
基金项目:
山西省应用基础研究计划(201801D221190, 201801D121144)
Doi:
10.15983/j.cnki.jsnu.2023026
Multi-source deep recommendation model of fusion dual attention mechanism
LIU Xiaoxiao1, XIE Jun1*, XU Xinying2, PAN Huali1
(1 School of Information and Computer, Taiyuan University of Technology, Jinzhong 030600, Shanxi, China;2 School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030000, Shanxi, China)
Abstract:
Aiming at the problem that the sparse rating data leads to the degradation of the recommendation quality of collaborative filtering algorithm, a multi-source deep recommendation model of fusion dual attention mechanism (MSDA) is proposed by fully mining reviews to enhance the recommendation performance. The model is based on three information sources of rating data, user review sets and product review sets for recommendation. It combines convolutional neural network and dual attention mechanism to mine the text features of reviews, and uses neural factorization machine to perform high-order nonlinear interaction between rating and review features, so as to achieve rating prediction. Experimental results show that, compared with advanced benchmark models such as NeuMF, NARRE, HRDR, MSDA significantly improves the score prediction performance.
KeyWords:
data sparsity; review text; deep learning; rating prediction