自然科学版
陕西师范大学学报(自然科学版)
生物医学大数据专题
基于结构深度网络嵌入方法的微生物-疾病关联关系预测
PDF下载 ()
陈亚丽, 雷秀娟*
(陕西师范大学 计算机科学学院,陕西 西安 710119)
雷秀娟,女,教授,博士生导师,主要从事生物信息计算、智能优化计算、数据挖掘、深度学习等方面的研究。E-mail: xjlei@snnu.edu.cn
摘要:
了解微生物-疾病关联不仅可以揭示疾病的发病机理,而且可以促进疾病的诊断和预后。提出一种基于结构深度网络嵌入的方法(NEMDA)来识别潜在的微生物-疾病关联。首先,通过整合人类微生物-疾病关联数据库(human microbe-disease association database,HMDAD)和Disbiome数据库,扩大微生物和疾病的数量以及已知的微生物-疾病关联关系。接着,将结构深度网络嵌入用于提取微生物-疾病二分网络的特征,并且引入微生物功能相似性、微生物相互作用谱相似性和疾病语义相似性、基于症状的疾病相似性,分别作为微生物和疾病的生物学特征。然后,将这3个特征结合构成微生物-疾病对的特征,并使用深度神经网络模型进行预测。最后,通过五折交叉验证和案例分析来评估NEMDA的性能,在五折交叉验证下,NEMDA表现良好,预测性能高于KATZMDA、NCPHMDA、LRLSHMDA、 PBHMDA 、NTSHMDA和BRWMDA 6种比较方法。哮喘、炎症性肠病和结直肠癌的案例分析结果进一步表明,NEMDA预测性能良好,其是一个有效的预测微生物-疾病关联的工具。
关键词:
微生物-疾病关联;微生物相似性;疾病相似性;结构深度网络嵌入;深度神经网络
收稿日期:
2022-06-17
中图分类号:
TP399
文献标识码:
A
文章编号:
1672-4291(2023)05-0011-14
基金项目:
国家自然科学基金(61972451, 61902230);中央高校基础研究基金(GK201901010)
Doi:
10.15983/j.cnki.jsnu.2023022
Prediction of microbial-disease relationship based on structured deep network embedding method
CHEN Yali, LEI Xiujuan*
(School of Computer Science,Shaanxi Normal University,Xian 710119,Shaanxi,China)
Abstract:
Understanding the microbe-disease relationship can not only reveal the pathogenesis of diseases, but also promote the diagnosis and prognosis of diseases.Based on the structured deep network embedding algorithm, a new method (NEMDA) is proposed to identify potential microbial-disease associations. First, by integrating the human microbe-disease association database (HMDAD) and Disbiome databases, the number of microbes and diseases as well as the known microbial-disease associations have been expanded. Next, the structural deep network is embedded to extract features on the microbe-disease bipartite network, and microbe functional similarity, microbe interaction profile similarity, disease semantic similarity and disease symptom similarity are introduced as the biological characteristics of microbes and diseases, respectively. Then, these three characteristics are combined to form the characteristics of the microorganism-disease pair, and the deep neural network model is used to make predictions. Finally, the performance of NEMDA is evaluated through five-fold cross validation and case analysis. Under five-fold cross validation, NEMDA performs well, and its prediction performance is higher than the six comparison methods of KATZMDA, NCPHMDA, LRLHMDA, PBHMDA, NTSHMDA and BRWMDA. The case studies of asthma, inflammatory bowel disease and colorectal cancer further show that NEMDA has good predictive performance. Therefore, NEMDA is an effective tool for predicting microbial-disease associations.
KeyWords:
microbe-disease association; microbe similarity; disease similarity; structural deep network embedding; deep neural network