自然科学版
陕西师范大学学报(自然科学版)
双碳背景下的新能源开发及存储专刊
Au@Ag@SiO2纳米棒等离子体对钙钛矿太阳能电池铅含量的降低策略
PDF下载 ()
傅年庆1*,李培育1,刘艳春2,3*
(1 华南理工大学 材料科学与工程学院,广东 广州 510641;2 广州市红日燃具有限公司,广东 广州 510450;3 广东省节能型功能陶瓷及其应用技术企业重点实验室,广东 广州 510450)
傅年庆,男,副研究员,研究方向为钙钛矿太阳能电池。E-mail: msnqfu@scut.edu.cn刘艳春,男,(教授级)高级工程师,研究方向为催化燃烧及太阳能电池。E-mail: lyc21@163.net
摘要:
Pb基卤化物钙钛矿的环境毒性是阻碍钙钛矿光伏技术产业应用的重要因素。通过降低钙钛矿吸光层厚度来减少Pb的用量(即物理降铅)是降低铅基钙钛矿太阳能电池(perovskite solar cells,PSCs)环境毒性的重要方法,但吸光层厚度的降低将显著削弱电池的光捕获能力。通过调节Au@Ag@SiO2纳米棒等离子体粒子的共振吸收波长与钙钛矿吸收光谱进行匹配,并将其引入TiO2介孔层,利用金属等离子体粒子的局域表面等离子共振(localized surface plasmon resonance,LSPR)产生的陷光效应实现了薄吸光层PSCs对长波长可见光的强化利用。当吸光层厚度从常规720 nm大幅降低到260 nm时,薄吸光层PSCs的光电转换效率仅下降14.1%(效率从19.1%下降到16.4%),但电池的Pb用量减少了63.9%。研究表明,利用金属等离子体粒子的LSPR效应可大幅减少PSCs的铅含量并同时保持较高的光电转换效率。
关键词:
钙钛矿太阳能电池;物理降铅;金属等离子体;局域表面等离子共振;薄吸光层
收稿日期:
2023-03-20
中图分类号:
TM914.4
文献标识码:
A
文章编号:
1672-4291(2023)04-0010-08
基金项目:
松山湖材料实验室开放课题基金(2021SLABFN03);国家自然科学基金(61604058)
Doi:
10.15983/j.cnki.jsnu.2023307
Strategies for reducing lead content in perovskite solar cells through plasmonic Au@Ag@SiO2 nanorod applications
FU Nianqing1*, LI Peiyu1, LIU Yanchun2,3*
(1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China;2 Guangzhou Redsun Gas Applications Corporation Limited, Guangzhou 510450, Guangdong, China;3 The Key Laboratory of Energy-Efficient Functional Ceramics and Applied Technology of Guangdong Province, Guangzhou 510450, Guangdong, China)
Abstract:
The environmental toxicity of Pb-based organic-inorganic halide perovskite is one of the most critical factors that hinder the commercialization of perovskite solar cells (PSCs). Reducing the amount of Pb usage by decreasing the thickness of the perovskite absorption layer (the so-called physical lead reduction) is an important approach to relieve the toxicity of Pb-based PSCs. However, reducing the thickness of the absorption layer will weaken the light-harvesting capacity of the solar cell and thus remarkably decrease the power conversion efficiency (PCE) of the devices. In this work, plasmonic Au@Ag@SiO2 nanorods with tunable resonance extinction are prepared and introduced into the mesoporous TiO2 electron transport layer of the PSCs with a much thinner active layer. Considerable improvement in light absorption is observed for the Au@Ag@SiO2 incorporated perovskite films, especially in the long-wavelength zone (550~750 nm), due to the light-trapping effect arising from the local surface plasmon resonance (LSPR) of metal nanorods.The results show that PSCs suffer only a 14.1% reduction in PCE (from 19.1% to 16.4%) with a 63.9% reduction in Pb usage, when the thickness of perovskite film decreased from 720 nm to 260 nm. This study demonstrates that utilizing the LSPR effect of metal plasmonic particles can substantially reduce the lead content of PSCs while maintaining high photoelectric conversion efficiency.
KeyWords:
perovskite solar cells; physical lead reduction; plasmonic metal nanorods; local surface plasmon resonance; thin absorption layer