自然科学版
陕西师范大学学报(自然科学版)
模糊数学与模糊系统专题
n-一致模的构造(Ⅱ)
PDF下载 ()
傅丽1,覃锋1,2*
(1 青海民族大学 数学与统计学院,青海 西宁 810007;2 江西师范大学 数学与统计学院,江西 南昌 330022)
覃锋,男,教授,博士生导师,主要从事基于模糊理论的不确定性研究。E-mail:qinfeng923@163.com
摘要:
借助Clifford半群序和理论,根据外层算子G1是否为一致模的分类标准,提出了两种n-一致模的构造方法。基于这些构造方法,可构造许多新的n-一致模。作为应用,证明了相关文献中具有连续基础算子的n-一致模的所有分解定理的逆命题都成立。
关键词:
模糊连接词;一致模;n-一致模; 序和
收稿日期:
2021-10-15
中图分类号:
O159
文献标识码:
A
文章编号:
1672-4291(2023)02-0130-09
基金项目:
国家自然科学基金(11971210,61967008); 江西省主要学科学术和技术带头人培养计划(20171ACB20010)
Doi:
10.15983/j.cnki.jsnu.2023119
Construction methods(Ⅱ) of n-uninorms
FU Li1,QIN Feng1,2*
(1 School of Mathematics and Statistics,Qinghai Minzu University,Xining 810007,Qinghai,China;2 School of Mathematics and Statistics,Jiangxi Normal University,Nanchang 330022,Jiangxi,China)
Abstract:
By means of Cliffords ordinal sum theory,according to the classification criteria of whether the outer operator G1 is a uninorm, the other two kinds of methods to constructing a new n-uninorm are given. Based on these methods, there are a number of new n-uninorms. Moreover, as an application, it is proved that the converse propositions of all decomposed theorems hold for all n-uninorms with continuous underlying functions in the relevant references.
KeyWords:
fuzzy connective; uninorms;n-uninorms; ordinal sum