自然科学版
陕西师范大学学报(自然科学版)
凸几何专题
加强的Wirtinger不等式及其几何应用
PDF下载 ()
曾春娜1,宾芮1,董旭1,马磊2*
(1 重庆师范大学 数学科学学院,重庆 401331;2 广东茂名幼儿师范专科学校 理学院,广东 茂名525000)
马磊,男,副教授,主要从事积分几何与凸几何分析研究。E-mail: maleiyou@163.com
摘要:
著名的Wirtinger不等式与诸多经典几何不等式等价或为其推广形式。主要研究了 Wirtinger不等式的推广,运用周期函数的性质,获得了一系列加强形式的 Wirtinger不等式;作为这些 Wirtinger不等式的应用,得到了关于原点对称凸体的Bonnesen型不等式的纯分析的证明。
关键词:
周期函数;等周不等式;Wirtinger 不等式;Bonnesen 型不等式
收稿日期:
2022-02-25
中图分类号:
O186.2
文献标识码:
A
文章编号:
1672-4291(2023)01-0055-05
基金项目:
重庆市自然科学基金(cstc2020jcyj-msxmX0609);重庆市教育委员会科学技术研究项目(KJQN201900530,KJZD-K202200509);重庆师范大学研究生科研创新项目(YKC21036)
Doi:
10.15983/j.cnki.jsnu.2023109
The strengthened Wirtinger inequality and its geometric applications
ZENG Chunna1,BIN Rui1,DONG Xu1,MA Lei2*
(1 School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China;2 School of Sciences,Guangdong Preschool Normal College in Maoming,Maoming 525000,Guangdong,China)
Abstract:
The famous Wirtinger inequality in analysis is equivalent to many classical geometric inequalities or its generalized form. The strengthened Wirtinger inequality is investigated. According to the properties of periodic functions,a series of strengthened Wirtinger inequalities are obtained. As an application of these Wirtinger inequalities, the proof of Bonnesen-type inequality for symmetric convex bodies is obtained.
KeyWords:
periodic function;isoperimetric inequality;Wirtinger inequality;Bonnesen-type inequality