自然科学版
陕西师范大学学报(自然科学版)
声学换能器专题
超磁致伸缩换能器设计及其涡流损耗分析
PDF下载 ()
刘强1,李婧2,张雄伟2,贺西平1*
(1 陕西师范大学 物理学与信息技术学院,陕西 西安 710119;2 中北大学 先进制造技术山西省重点实验室,山西 太原 030051)
贺西平,男,教授,博士生导师,研究方向为超声工程、水声换能器设计。E-mail: hexiping@snnu.edu.cn
摘要:
为减小超磁致伸缩换能器在高频工作时的设计误差并抑制涡流损耗,基于解析法设计了一种新型超磁致伸缩换能器,利用表观弹性法求出换能器的等效弹性常数,计算了换能器的共振频率,利用有限元软件对换能器进行动力学分析,并对换能器的稀土棒进行涡流损耗分析;进一步研制了换能器的样机,并进行阻抗测试。结果表明:未处理稀土棒的涡流损耗主要集中于外径表面,切片后稀土棒的涡流损耗减小了67.98%;根据表观弹性法计算的换能器共振频率与有限元计算、实验测试结果基本一致,而基于一维纵向理论求得换能器的共振频率与实验测试结果相差较大。
关键词:
超磁致伸缩材料;超声换能器;有限元分析;涡流损耗
收稿日期:
2021-10-12
中图分类号:
TB552
文献标识码:
A
文章编号:
1672-4291(2022)06-0064-05
基金项目:
国家自然科学基金(12174241);中北大学先进制造技术山西省重点实验室开放课题研究基金(XJZZ202005)
Doi:
10.15983/j.cnki.jsnu.2022215
Design of giant magnetostrictive transducer and analysis of eddy current loss
LIU Qiang1, LI Jing2, ZHANG Xiongwei2, HE Xiping1*
(1 School of Physics and Information Technology, Shaanxi Normal University,Xian 710119, Shaanxi, China;2 Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, Shanxi, China)
Abstract:
To reduce the design error of giant magnetostrictive transducer at high frequency operation and suppress eddy current loss, the giant magnetostrictive transducer is designed based on the analytical method.The equivalent elastic constant of the transducer is obtained by the apparent elastic method and the resonance frequency of the transducer is calculated.The finite element software is used to calculate the equivalent elastic constant of the transducer and analyze the dynamics of the transducer. A prototype of the transducer is developed and the impedance test of the transducer is carried out. The results show that the eddy current loss on the outer diameter surface of the untreated rare earth rod is relatively large and the internal is small, and the eddy current loss of sliced rare earth rod was 67.98% lower than that of untreated rare earth rod.The resonance frequency of the transducer obtained by the apparent elasticity method is closer to the finite element calculation and experimental tests, resonance frequency of the transducer obtained based on the one-dimensional longitudinal theory is quite different from the experimental test.
KeyWords:
giant magnetostrictive material; ultrasonic transducer; finite element analysis; eddy current loss