自然科学版
陕西师范大学学报(自然科学版)
声学换能器专题
热管冷却对压电换能器振动稳定性的影响
PDF下载 ()
刘世清*,樊叶萍,麻磊磊,高晓蕾
(浙江师范大学 物理与电子信息工程学院,浙江 金华 321004)
刘世清,男,教授,博士生导师,研究方向为功率超声。E-mail:zjnulsq@163.com
摘要:
针对大功率超声换能器工作发热问题,提出了一种新型的热管型复合压电超声换能器,并进行了实验和仿真研究。首先,研究了空载情况下,有、无热管2种状态换能器的内部轴向温度场分布;其次,利用有限元法研究了热管耦合位置、数量及深度对换能器共振频率和位移振幅的影响;最后,通过实验研究了400 W负载下,有、无热管换能器的共振频率和动态电容随温度的变化关系。结果表明:压电陶瓷工作发热是换能器发热的主要因素,利用热管可大幅降低换能器的内部温度;在相同工况下,热管可使换能器温升降幅达42.5%,并使换能器的共振频率和动态电容漂移量分别降低约73.5%与59.5%。
关键词:
大功率超声换能器;热管;散热;有限元仿真
收稿日期:
2020-12-08
中图分类号:
O426.9
文献标识码:
A
文章编号:
1672-4291(2022)06-0058-06
基金项目:
国家自然科学基金(11874326,11874327)
Doi:
10.15983/j.cnki.jsnu.2021.02.003
The effect of the heat pipe cooling on the vibration stability of the piezoelectric ultrasonic transducer
LIU Shiqing*, FAN Yeping, MA Leilei, GAO Xiaolei
(College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, Zhejiang, China)
Abstract:
To solve the calorific problem of high power ultrasonic transducer, a new type of heat pipe composite piezoelectric ultrasonic transducer is presented and studied by simulation and experiment. Firstly, the axial temperature distribution inside the transducer with and without heat pipe under no-load condition are studied. Secondly, the influence of the coupled position, number and depth of the heat pipe on the resonance frequency and displacement amplitude of the transducer are investigated with finite element method. Finally, the relationship between the resonant frequency and dynamic capacitance of the heat-pipe-type piezoelectric transducer with and without heat pipe under a load of 400 W is investigated by using experimental methods. The results show that the heating of piezoelectric ceramics is the main factor for the heating of transducers. The internal temperature of the transducer can be greatly reduced by using heat pipe. Under the same working condition, the heat pipe can reduce the temperature of the transducer by 42.5%, and reduce the shift of resonant frequency and dynamic capacitance of the transducer by 73.5% and 59.5%, respectively.
KeyWords:
high-power ultrasonic transducer; heat pipe; heat dissipation; finite element method