自然科学版
陕西师范大学学报(自然科学版)
生态系统服务专刊
关中平原城市群景观格局指数对PM2.5模拟的影响
PDF下载 ()
杨可1,周自翔1*,白继洲1,刘焕武2
(1 西安科技大学 测绘科学与技术学院,陕西 西安 710054; 2.西安市环境监测站, 陕西 西安 710119)
周自翔,男,副教授,硕士生导师,主要从事景观地理与生态系统服务研究。 E-mail:zhouzixiang@xust.edu.cn
摘要:
可入肺颗粒物(PM2.5)与城市空气质量和人类健康密切相关,而土地利用景观格局是影响PM2.5的关键因素之一,探究土地利用景观格局与PM2.5之间的影响机制对环境保护和治理意义重大。基于PM2.5监测站点数据和辅助数据,利用地理加权回归模型模拟分析关中平原城市群2015—2019年PM2.5浓度,使用主成分分析筛选出表征城市群土地景观破碎度的景观蔓延度指数,将其引入地理加权回归模型分析景观格局指数对PM2.5浓度模拟的影响,分别采用空气质量监测站点实测数据和第三方空气污染数据集(CHAP)进行模型精度验证。结果显示:加入景观蔓延度指数后,地理加权回归模型拟合实测数据能力更强,验证精度和稳定性较好,拟合优度综合提升4.65%;这表明引入景观指数所构建的地理加权回归模型能够以较高的空间分辨率和精度模拟关中平原城市群PM2.5浓度。研究结果不仅有助于了解关中平原城市群PM2.5的影响因素及其空间异质性,而且有助于更好地认识景观格局对PM2.5的综合影响,为城市群在景观尺度的大气污染防控提供科学支撑。
关键词:
景观格局指数;PM2.5;地理加权回归;关中平原城市群
收稿日期:
2022-04-07
中图分类号:
X171.1;X513
文献标识码:
A
文章编号:
1672-4291(2022)04-0115-10
基金项目:
国家自然科学基金(41771576);陕西省自然科学基础研究计划(2018JM4010)
Doi:
10.15983/j.cnki.jsnu.2022310
Effect of landscape pattern index on PM2.5 simulation in Guanzhong Plain Urban Agglomeration
YANG Ke1 , ZHOU Zixiang1* , BAI Jizhou1 , LIU Huanwu2
(1 College of Geometrics, Xian University of Science and Technology, Xian 710054, Shaanxi, China; 2 Xian Environmental Monitoring Station, Xian 710119, Shaanxi, China)
Abstract:
PM2.5 is related to urban air quality, while human health and landscape pattern of land use is one of the key factors affecting PM2.5. As a spatial carrier of PM2.5, landscape pattern is inevitably affecting local and regional PM2.5 concentration. It is of great significance to explore the influence mechanism between landscape pattern and PM2.5 for environmental protection and air pollution control. Based on PM2.5 monitoring station data and auxiliary data, the geo-weighted regression model (GWR) was used to simulate conditions on the PM2.5 concentration in the Guanzhong Plain Urban Agglomeration from 2015 to 2019. Then the landscape sprawl index(CONTAG) was selected by the principal component analysis, and introduced into the GWR model to analyze the influence of landscape pattern index on the PM2.5 concentration simulation. The accuracy of the PM2.5 concentration modelling was validated with the observed data from air quality monitoring stations and third-party air pollution dataset (CHAP) respectively.The results show that CONTAG added makes the GWR model more suitable for the characteristics of the field-observed data itself with better validation accuracy and stability, and improves the goodness of fit by 4.65%. It was indicated that the GWR model with landscape index incorporated can simulate PM2.5 concentration in Guanzhong Plain Urban Agglomeration with high spatial resolution and accuracy. The results not only conduce to understand the influencing factors and spatial heterogeneity of PM2.5 especially the comprehensive impact of landscape pattern on PM2.5 in Guanzhong Plain Urban Agglomerations, but also sever the purpose of providing scientific support for air pollution prevention at the landscape scale in urban agglomerations.
KeyWords:
landscape pattern index; PM2.5; geo-weighted regression; Guanzhong Plain Urban Agglomeration